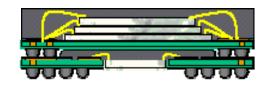
cādence"

Modeling and Analysis Methodologies of Complex Digital Systems-in-Package Designs

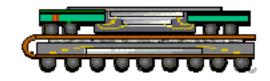
Zhen Mu

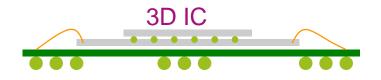
- Design Challenges of System in Package (SiP)
- Modeling and analysis solutions
 - Co-Design methodologies
 - SI and PI analysis

- Design Challenges of System in Package (SiP)
- Modeling and analysis solutions
 - Co-Design methodologies
 - SI and PI analysis


- SiP
 - Single package that combines all of the electronic components (digital ICs, analog ICs, RF ICs, passive components or other elements) needed to provide a system or sub-system.

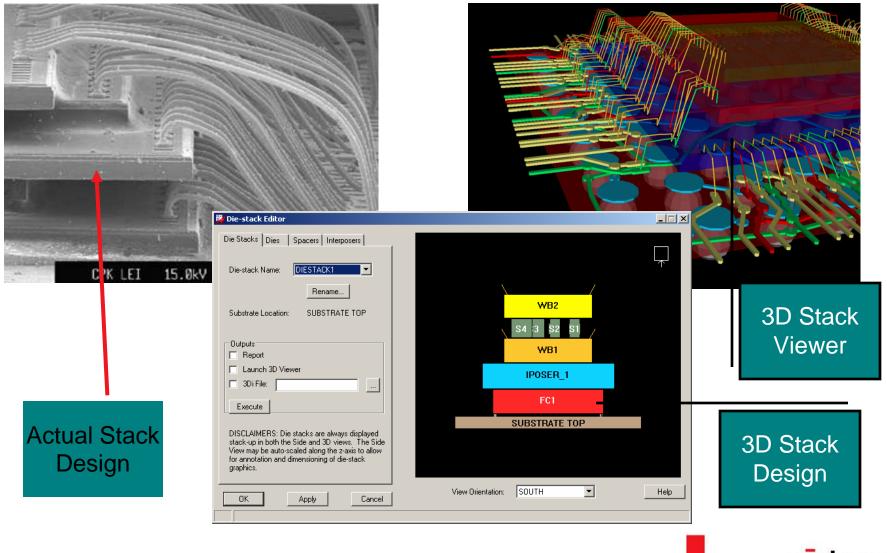
Courtesy of Philips





Die stacking

Package-on-package



cādence

© 2007 Cadence Design Systems, Inc. All rights reserved worldwide. 5

Complex die stack design

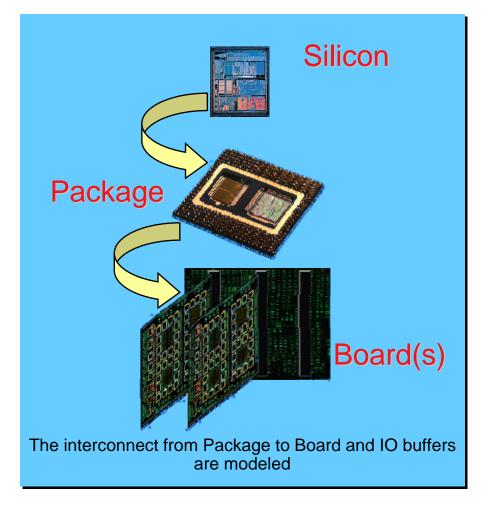
© 2007 Cadence Design Systems, Inc. All rights reserved worldwide.

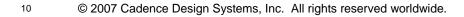
6

- Design Challenges of System in Package (SiP)
- Modeling and analysis solutions
 - Co-Design methodologies
 - SI and PI analysis

Modeling and analysis challenges

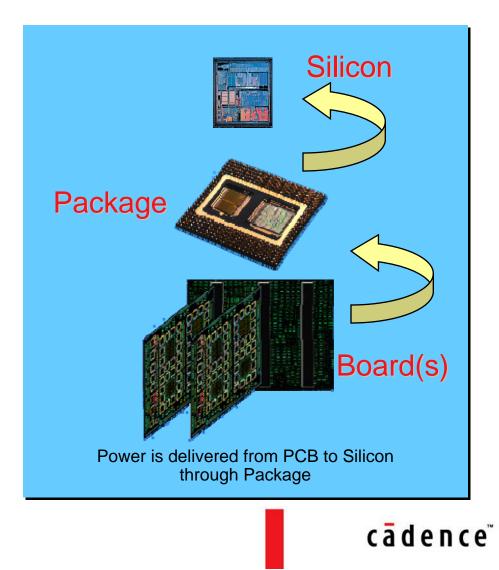
- Optimization requires design automation
- Recongnicing the differences between SiP design and classic single package and PCB designs
- Issues
 - Multiple stacked dies are placed vertically or horizontally
 - Connection between multiple dies are realized by wirebonding, interposer, interconnect, or flip-chip technology
 - IC design needs to consider package design, while package design needs to consider IC requirements
 - How to make die information available to package designers, and how to pass package models back to IO designers to simulate entire signal path
 - Data passing and property mapping



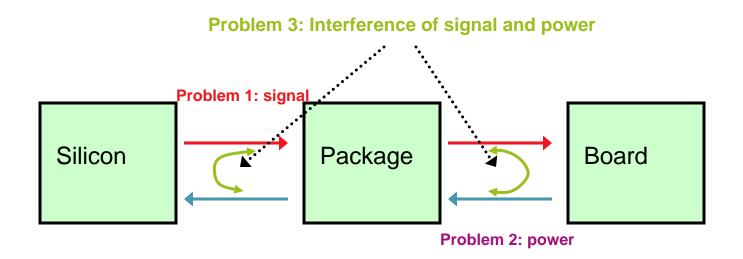

Modeling and analysis challenges (cont')

- Fundamental requirements for SiP tools
 - An environment with IC/package/board co-design and cosimulation capabilities
 - To provide engineers with Signal Integrity (SI) and Power Integrity (PI) solutions
 - Concurrent pre-route analysis and post-route verification

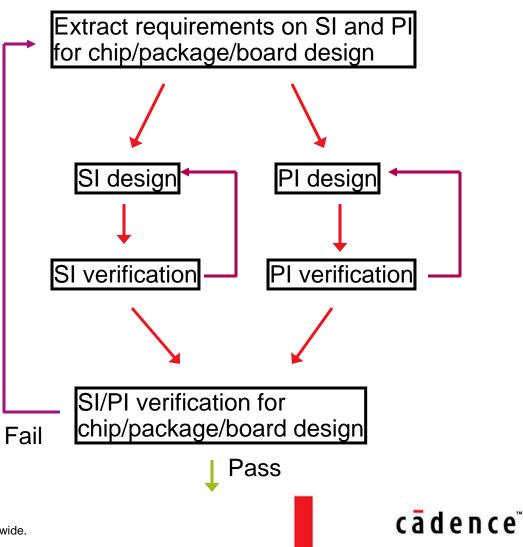
Co-design methodologies in high-speed design


- Problem1: Signal path from silicon to board through package
 - Reflections, xtalk, timing

Co-design methodologies in high-speed design (cont')


 Problem 2: Power delivery path from board to silicon through package

11 © 2007 Cadence Design Systems, Inc. All rights reserved worldwide.


Co-design methodologies in high-speed design (cont')

• Problem 3: Effects between signal and power supply

Co-design methodologies in high-speed design (cont')

- A general flow for co-design
 - Not only to include silicon/package/ board codesign, but also SI and PI codesign and cosimulation

Problem 1 - Signal analysis: stackup design

• Crossection details

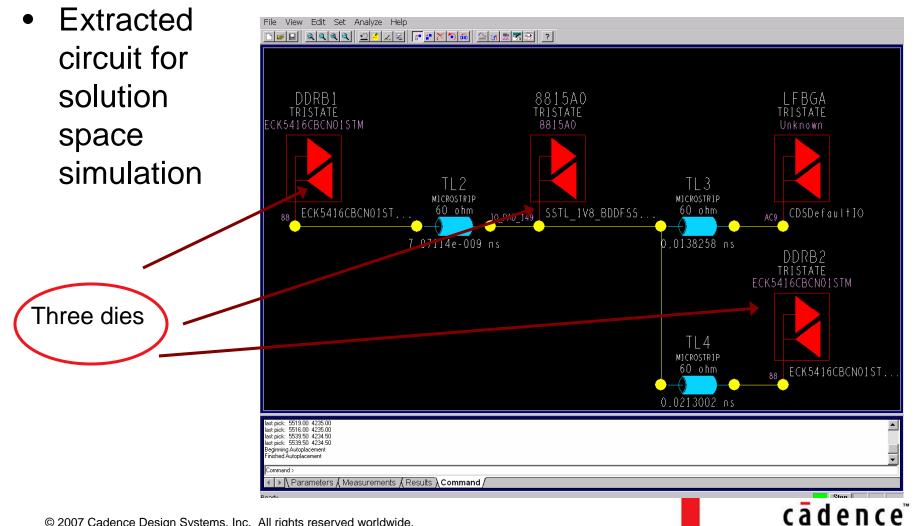
	Subclass Name	Туре		Material	3	Thickness	Conductivity	Dielectric	Loss Tangent	Negative	Shield	Width (UM)	mpedance
T		SURFACE		AIR									
2	WBOND_TOP_STK	DIESTACK	-		_					s			1
}	SPACER1	DIELECTRIC	-										
	WBOND_BOT_STK	DIESTACK	-				8		5	8 <u>.</u> 3			
1	SPACER2	DIELECTRIC	-								8		
5	TOP_COND	CONDUCTOR	*	COPPER		30.48	595900	1.000000	0			50.00	
	1	DIELECTRIC	-	FR-4	-	60	0	4.500000	0.035		-		
	METAL2	CONDUCTOR	*	COPPER		30.48	595900	1.000000	0.021			50.00	
		DIELECTRIC	+	FR-4	-	125	0	4.500000	0.035				
)	VSS	PLANE	+	COPPER	-	30.48	595900	1.000000	0.021		×	5	
	a a	DIELECTRIC	-	FR-4		200	0	4.500000	0.035				
2	VDD	PLANE	-	COPPER	-	30.48	595900	1.000000	0.021		×	8	5
		DIELECTRIC	-	FR-4		125	0	4.500000	0.035				
	METAL3	CONDUCTOR	+	COPPER		30.48	595900	1.000000	0.021			75.00	
j.	1	DIELECTRIC	-	FR-4		60	0	4.500000	0.035				
	BOT_COND	CONDUCTOR	-	COPPER	-	30.48	595900	1.000000	0			75.00	
													•
Т	otal Thickness: 752.88 UM	Initializ [Custo	102022000	ductive Layer Di	electri	c: Dielect	ric Constant	: Loss	Tangent:		Differ	ential Mo olve Moo	

cādence

14 © 2007 Cadence Design Systems, Inc. All rights reserved worldwide.

Problem 1 - Signal analysis: establishing constraints File Edit View Add Display Setup Logic Place Route Analyze Reports Tools Help

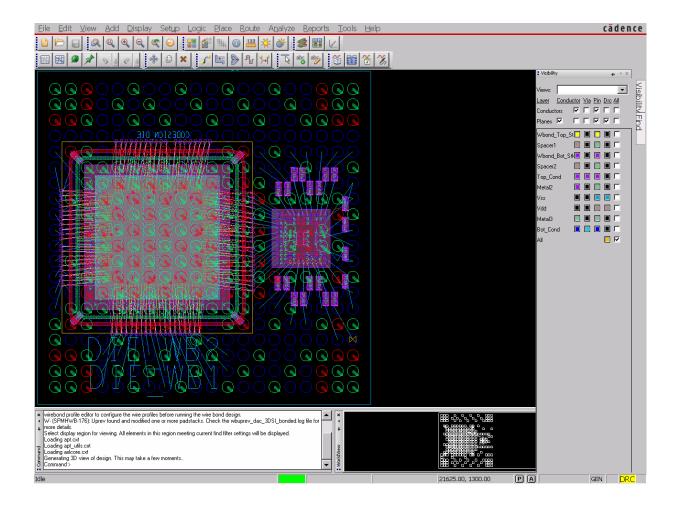
Early exploration on multiools DRC Help Þ 🎒 🖪 斄 🗾 😂 🕂 1z 🖻 🖉 🗇 die connection W-Since the net to be extracted is on a diffpair not defined by differential(device models, its xnet mate is not extracted last pick: 2389 559 - 2360 840 No Element Found. Cmd: Idle P A 9800.000, -200.000 ter selection poin


© 2007 Cadence Design Systems, Inc. All rights reserved worldwide. 15

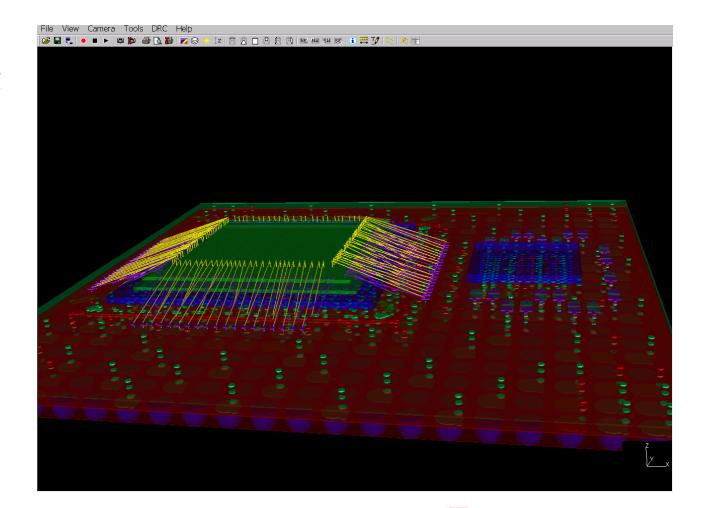
lacksquare

cādence

Find \


Problem 1 - Signal analysis: establishing constraints

© 2007 Cadence Design Systems, Inc. All rights reserved worldwide. 16

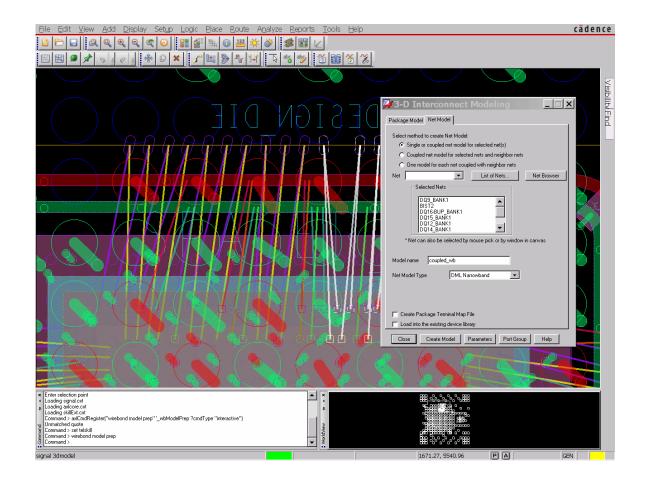

Problem 1 - Signal analysis: interconnect modeling

- Detailed interconnect modeling
 - Wirebonds

Problem 1 - Signal analysis: assistant to analysis

- Detailed interconnect modeling
 - 3D view

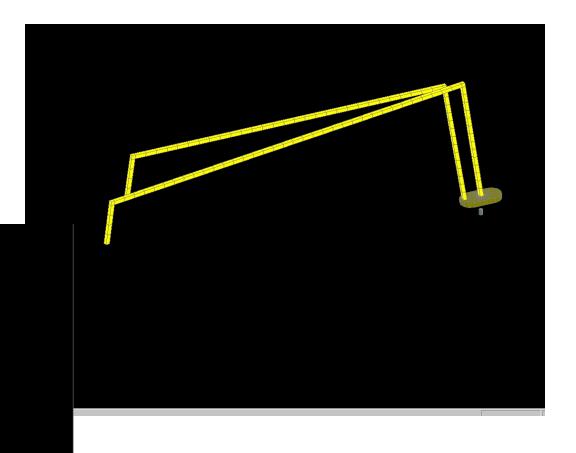
cādence[~]


Problem 1 - Signal analysis: wirebond constraints

- Perform what/if analysis by changing wirebond profiles
 - Work with existing design and/or start new design
 - Edit the parameters
 - Update (or extract) constraints

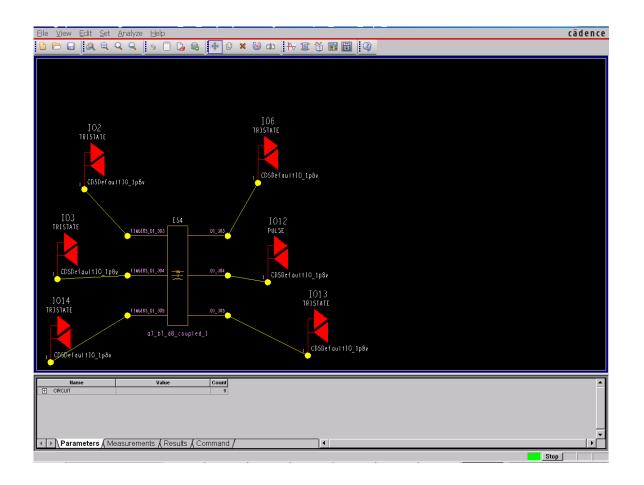
ctive Profile: PROFI	LE1	•	Add C	бору	Delete	
laster Definitions:					Load 9	àave
efinition						
irection: Forward Bond	Material: G	DLD 💌	Diameter: 10	JM	Refresh from	Master
	Start		1	1	End	1
Horizontal	Lengt	h		· ·		
Value 🔤 🚥	100 U	3.02				
Vertical	Perce			•		
Value	50.00	0%				
•						
kample						
ample Start Height: 200		Sample Length:	2000 UM			
ample start height. [200	- SM	Sample Lengui.	12000 011			
	<u></u>					
		<u> 100</u> 0				
		10000				

Problem 1 - Signal analysis: coupled wirebond modeling

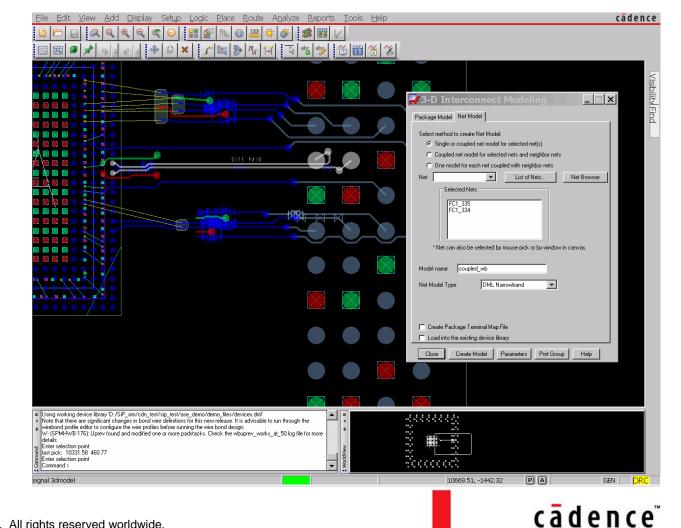

 Create 3D models of multi-coupled wiorebonds

cādence[™]

Problem 1 - Signal analysis: coupled wirebond modeling (cont')

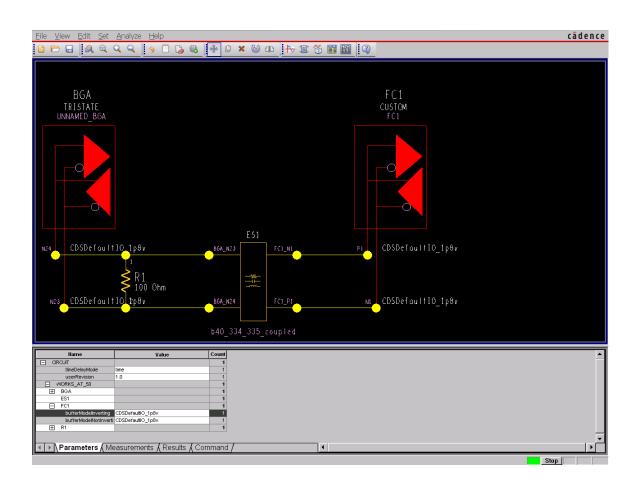

 Interested wirebonds

cādence[~]

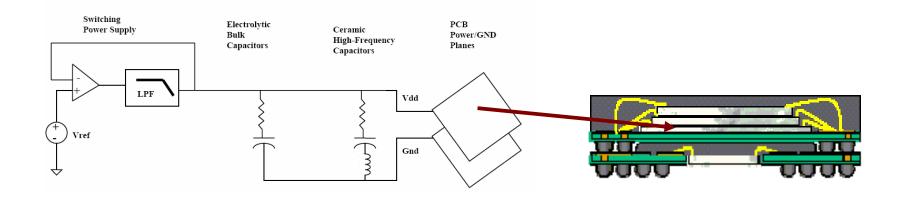

Problem 1 - Signal analysis: coupled wirebond modeling (cont')

 Model validation with topology simulation

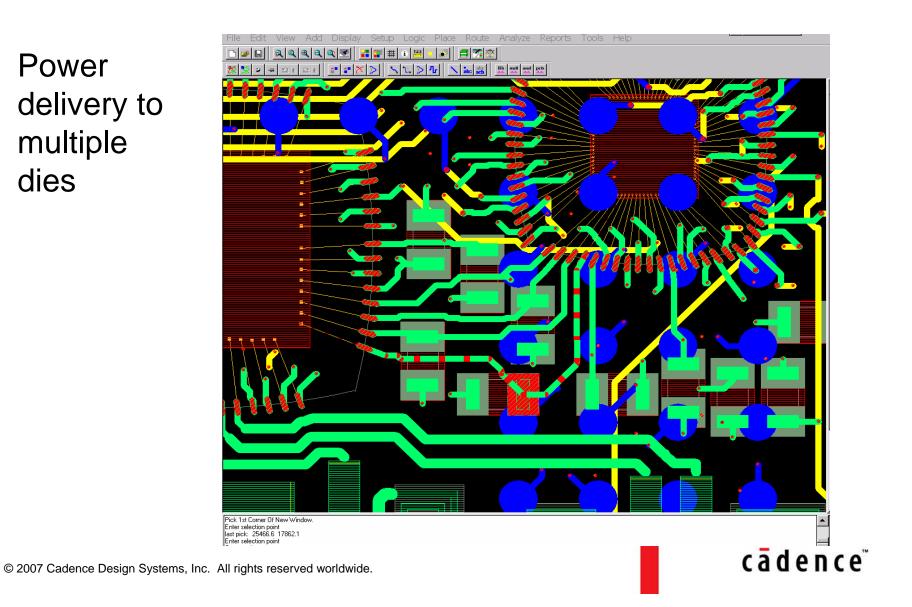
Problem 1 - Signal analysis: reflections, crosstalks, timing


- Building simulation circuits
 - Simulating routed nets
 - Using 3D models

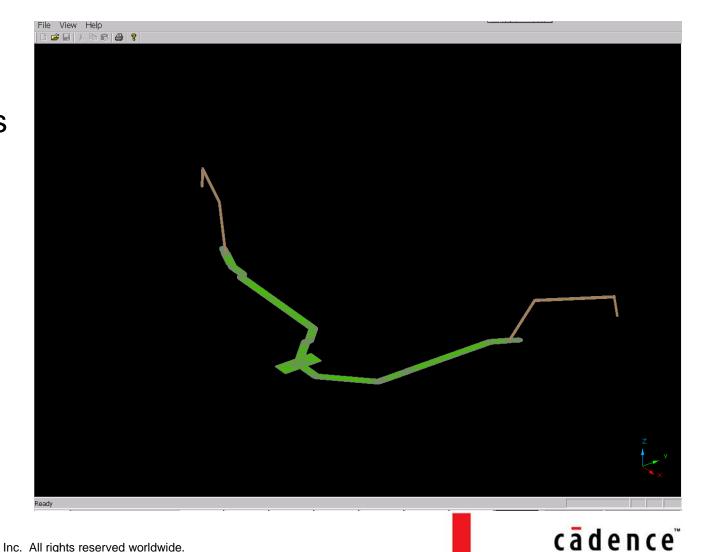
23 © 2007 Cadence Design Systems, Inc. All rights reserved worldwide.


Problem 1 - Signal analysis: reflections, crosstalks, timing (cont')

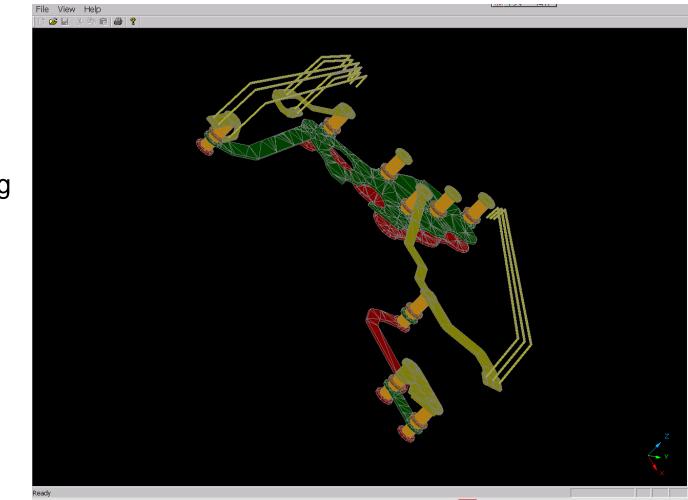
• Simulation circuit


Problem 2 - Power analysis: power delivery on SiP

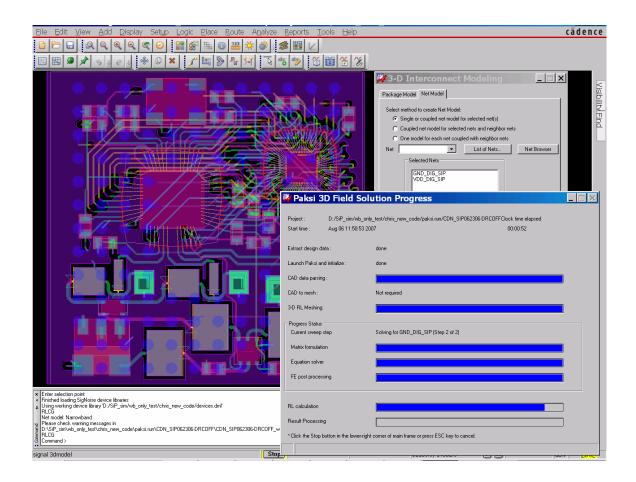
• Power delivered to multiple chips through substrate


Problem 2 - Power analysis: power delivery

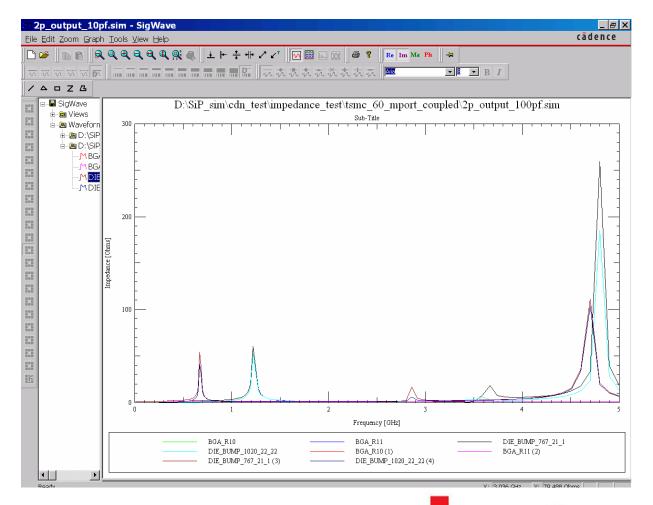
Power delivery to multiple dies


Problem 2 - Power analysis: power delivery

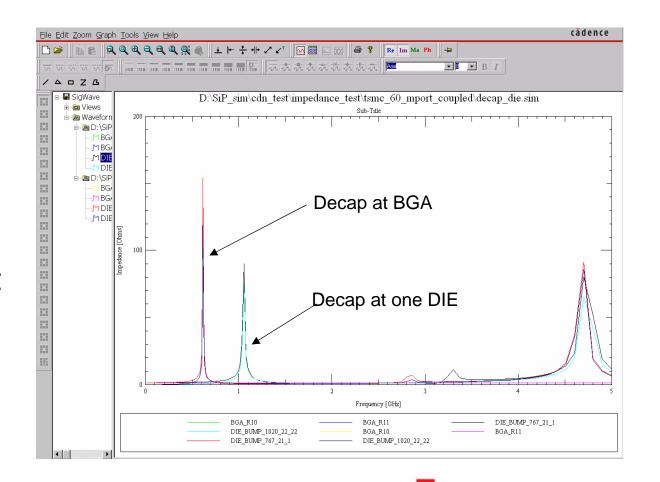
 Power delivery to multiple dies


Problem 2 - Power analysis: power delivery

- Power delivery to multiple dies
 - Decoupling capacitor selection and placement

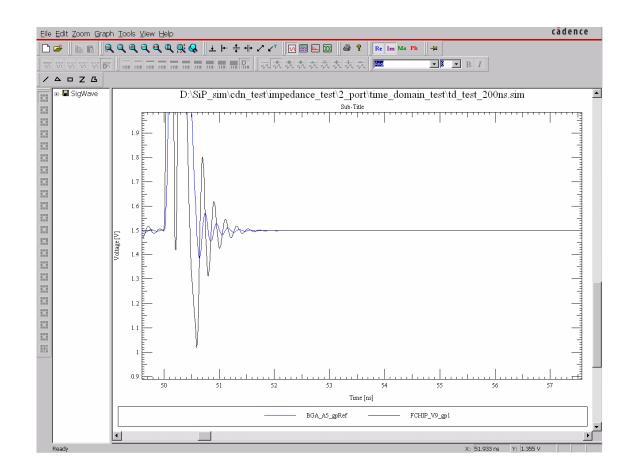

Problem 2 - Power analysis: decoupling analysis on SiP

- Select power and ground nets that deliver power to multiple dies
- Create coupled 3D models of power/ground nets
- Performa frequency domain analysis on the extracted power/ground model
- Place decoupling capacitors at die pins or at BGA pins, if needed


Problem 2 - Power analysis: decoupling analysis on SiP (cont')

This is the impedance profile at different pin locations

Problem 2 - Power analysis: decoupling analysis on SiP (cont')


 Observe the difference in impedance profile when placing decoupling capacitor at BGA side or at die side

31 © 2007 Cadence Design Systems, Inc. All rights reserved worldwide.

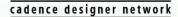
Problem 2 - Power analysis: time domain simulation on SiP

- Observe time domain waveforms at BGAs and die pins
 - This is voltage drop across package in time domain
- Change capacitance values to verify decoupling capacitor effects

Problem 2 - Power analysis: DC resistance extraction on SiP

- When frequency is set to zero, DC resistance can be obtained
 - Using port grouping function, the resistance between any two pins on any net can be extracted
 - Then, current drop of the entire path on a DC net can be easily derived

	A	В	С	D	E	F	G	Н
1	Parasitic	Extraction	Results	- (performe	d on Augus	t 06. 2007)	Net Name	
2								
3	Neti	NetJ	Rij (mOhm	Lij (nH)	Cij (pF)	Gij (uMho)	Td (ns)	
4	PLL_VDD	PLL_VDD	3.45E+01	2.43E+00	2.32E+00	0	7.52E-02	
5	PLL VDD	NET0365<	0.00E+00	2.14E-02	1.15E-02	0		
6	NET0365<	PLL_VDD	0.00E+00	2.14E-02	1.15E-02	0		
7	PLL_VDD_	NET0365<	0.00E+00	1.85E-02	1.15E-02	0		
8	NET0365<	PLL_VDD_	0.00E+00	1.85E-02	1.15E-02	0		
9	PLL_VDD	NET0204	0.00E+00	3.37E-02	2.97E-01	0		
10	NET0204	PLL_VDD_	0.00E+00	3.37E-02	2.97E-01	0		
11	PLL_VDD_	RESET	0.00E+00	1.93E-04	6.55E-02	0		
12	RESET	PLL_VDD	0.00E+00	1.93E-04	6.55E-02	0		
13	PLL_VDD	POL	0.00E+00	5.46E-03	3.05E-02	0		
14	POL	PLL_VDD_	0.00E+00	5.46E-03	3.05E-02	0		
15	PLL_VDD	NET294	0.00E+00	2.75E-04	1.09E-01	0		
16	NET294	PLL_VDD	0.00E+00	2.75E-04	1.09E-01	0		
17	PLL_VDD_	NET284	0.00E+00	-9.27E-05	1.17E-02	0		
18	NET284	PLL_VDD	0.00E+00	-9.27E-05	1.17E-02	0		
19	PLL_VDD			-1.35E-03		0		
20	NET251	PLL VDD	0.00E+00	-1.35E-03	1.17E-02	0		
21	PLL VDD			-1.61E-03		0		
22	NET249	PLL VDD	0.00E+00	-1.61E-03	1.07E-02	0		
23	PLL VDD	F 44MHZ	0.00E+00	-2.68E-03	2.34E-02	0	1	
24	F 44MHZ	PLL VDD	0.00E+00	-2.68E-03	2.34E-02	0		
25	PLL VDD	CHS<3>	0.00E+00	-1.53E-03	2.32E-02	0		
26	CHS<3>	PLL VDD	0.00E+00	-1.53E-03	2.32E-02	0		
27	PLL_VDD	CHS<2>	0.00E+00	-1.86E-03	2.33E-02	0		
28	CHS<2>	PLL_VDD	0.00E+00	-1.86E-03	2.33E-02	0		
29	NET0365<	NET0365<	5.99E+02	1.03E+01	1.97E+00	0	1.43E-01	
30	NET0365<	NET0365<	0.00E+00	4.47E-01	6.78E-02	0		
31	NET0365<	NET0365<	0.00E+00	4.47E-01	6.78E-02	0		
32	NET0365<	NET0204	0.00E+00	3.03E-02	1.20E-02	0		
33	NET0204	NET0365<	0.00E+00	3.03E-02	1.20E-02	0		
34	NET0365<	RESET	0.00E+00	-6.56E-02	2.43E-02	0		
35	RESET	NET0365<	0.00E+00	-6.56E-02	2.43E-02	0		
36	NET0365<			1.25E-01		0		
	POL		0.00E+00		2.43E-02	0		
38	NET0365<		0 00E+00			n		


cādence

33 © 2007 Cadence Design Systems, Inc. All rights reserved worldwide.

- System-in-Package is the right integration solution for wireless and consumer products
 - It posts great challenges to designs and analyses (differences between single package and PCB designs)
- IC-Package-Board co-design and co-simulation methodologies are key to successful SiP designs
- Cadence provides a design and analysis environment to meet digital SiP design requirements
 - SI and PI solutions need to support multiple die designs
 - Interconnect designs, stacked die configurations, etc...
 - SI and PI solutions are implemented in Cadence's Digital SiP environment

CONNECT: IDEAS

cādence™

CDNLive! 2007 Silicon Valley