

Co-design of PCBs for electrical, mechanical and thermal engineers

power density 1356LORCB

Based on EDA Design for Manufacturing Flows

CDNLive 2007

FLOMERICS

 $(\rho \varphi) + div \left(\rho \overline{V} \varphi - \Gamma_{\alpha} grad \varphi \right) = S_{\alpha}$

Dirk Niemeier Support Manager Flomerics Ltd.

AGENDA

FLOMERICS

Drivers for temperature - aware design

Impact on PCB design

 $\rho\varphi$) + div $(\rho \nabla \varphi - \Gamma_{\varphi} \operatorname{grad} \varphi) = S_{\varphi}$

Making the Allegro design flow temperature - aware

power density 1355LORCB

Case Study

Summary & Conclusions

Drivers for Temperature Aware Design

FLOMERICS

 $-(\rho\varphi) + div\left(\rho \bar{V}\varphi - \Gamma_{\varphi} \operatorname{grad} \varphi\right) = S_{\varphi}$

Market forces	Functionality Performance Time to market
Product requirements	Form factor Parts count Speed
Physical design challenges	Packaging/ Signal Design Design thermal sensitivity margin quality density
Cost	\$1

FLOMERICS $1 - (\rho \varphi) + div (\rho \overline{V} \varphi - \Gamma_{\alpha} grad \varphi) = S$

Product Requirements

- Designs are complex
 - High transmission speeds
 - High PCB layer count
 - High pin count ASICs
 - Embedded passives
 - Daughter cards
 - Extensive heat sinking
- Design margins are small, risk is high
 - Performance, reliability are compromised
 - 80-90% of nets are constrained, restricting component placement
 - Heat sinks are large and complex, requiring placement flexibility
- Design closure is difficult and costly
 - Signal integrity, thermal & component placement requirements clash

- Co-design is critical
- Performance is being impacted

FLOMERICS

 $(\rho \varphi) + div \left(\rho \overline{V} \varphi - \Gamma_{\varphi} grad \varphi \right) = S$

Physical Design Challenges: Five Year Thermal Density Trends*

Rack

System/PCB

IC/package

power density 1358 SORCB

900%

*Flomerics customer survey data

FLOMERICS $1 - (\rho \varphi) + div (\rho \overline{V} \varphi - \Gamma_{\rho} grad \varphi) =$

Physical Design Challenges

400 W Board 526.91 192.63 128.45 64.227 6.0616e-015 Temperature (deg C) > 156.96 126.47 05.981 65.49 65.49 65.49 65.49

Components @ 120 °C

PCB at 1.5 W/in², 1 m/s

 PCB power densities are reaching 1.5 W/in² for high speed applications

- At this level, the PCB has reached its heat sinking limit
- Thermally unworkable designs
 are common
- 20% of Flomerics customers have reached this threshold and the percentage is rising
- The industry in general can see the approaching threshold

power density 1355LORCB **FLOMERICS** $(\rho \varphi) + div \left(\rho \overline{V} \varphi - \Gamma_{\sigma} \operatorname{grad} \varphi\right) = S_{\rho}$ Heat Sink Design Issues at the Threshold **Over-sized** heat sink Multicomponent <u>heat sinks</u> Interferences are common, heat sinks are heavy Heat sinks must be mounted to the PCB Assembly is more complicated Components may run hot

FLOMERICS $\int \frac{\partial}{\partial r} (\rho \varphi) + div \left(\rho \overline{V} \varphi - \Gamma_{\rho} \operatorname{grad} \varphi \right) = S$

Traditional PCB Design

Thermal Solution Design Requirements

- Junction temperature
- Shock and vibration
- ► Cost
- Mechanical fit
- Parts availability
- System level performance

Traditional PCB Design

 $(\rho \varphi) + div \left(\rho \overline{V} \varphi - \Gamma_{\rho} \operatorname{grad} \varphi \right) = S$

FLOMERICS

FLOMERICS $1 - (\rho \varphi) + div (\rho \overline{V} \varphi - \Gamma_{\alpha} grad \varphi) = S_{\alpha}$

Temperature-Aware PCB Design

- Bi-directional model transfer
- High-degree of automation
 - Model transfer and filtering
 - Model-set up
 - Solver automation
 - Results viewing and interpretation
- Intuitive user control
 - Drag 'n Drop model modification
 - SmartParts
 - Intelligent modeling rules
 - Interactive 3D viewing
- The time to complete the loop from SI constraints to thermal design, back to SI constraints must be completed in minutes

- Traditional loop response time 3-5 days
- Temperature aware response time 20-60 minutes

FLOMERICS

 $(\rho \varphi) + div \left(\rho \overline{V} \varphi - \Gamma_{\rho} \operatorname{grad} \varphi \right) = S_{\rho}$

SI Constraints -> Thermal Design

FLOMERICS

 $\rho \varphi$) + div ($\rho V \varphi - \Gamma_{\varphi} grad \varphi$)

power density 1355 SORCB

۹.

SI Constraints -> Thermal Design

FLOMERICS

 $-(\rho \varphi) + div \left(\rho \bar{V} \varphi - \Gamma_{\varphi} grad \varphi\right) = S_{\varphi}$

ctional Layout			Environment Definition	I	Results Analysis
Gran MotherBoard Gran Layers		PLOMERICS FLO/PCB		. 160 200 240 28	
	Compone	nt Filte	r Options	<u>×</u>	
	Combine Parame	eters By	Or		
	Side Length Less Than Height Less Than Power Less Than		1 mm	mm	
			1	mm	
			0	W	
	Power Density L	ess Than	0	W/m^2	
	Name Contains	l.	Undefined		
Name MotherBoard Z Rotation None Flip Board Length 400 Writh 200	Filter	Delete	Cancel	Help	J
Thickness 1.6 Dielectric Material FR4 Notes			Compone only the crit be perced	ent filter allows for ical components t	0

FLO/PCB User Interface: Designed for Quick Thermal Verification

power density 1356LOPCB

FLOMERICS

 $(\rho \varphi) + div (\rho V \varphi - \Gamma_{\varphi} grad \varphi) =$

FLOMERICS $1 - (\rho \varphi) + div (\rho \overline{V} \varphi - \Gamma_{\varphi} grad \varphi) = S$

Layout 1 Variant Definition

1. Heatsinks added to thermally critical components

power density 1356LOPCB

- Check mechanical fit
- 2. Proposed thermally optimized layout manually defined in thermal tool
- 3. Ensure that appropriate up-to-date power dissipation values are entered
- 4. Select the environment in which the design is to operate, e.g. card slot
- 5. Perform a thermal prediction and inspect results

Response time: 20 minutes!

FLOMERICS $1 - (\rho \varphi) + div (\rho \overline{V} \varphi - \Gamma_{\rho} \operatorname{grad} \varphi) = S$

Layout 2 Variant

1. Critical component moved in an attempt to decrease its case temperature

power density 1355LORCB

- **1.** Check mechanical fit
- 2. All other settings retained
- 3. Perform a second thermal prediction!

Response time 10 minutes

FLOMERICS $\int_{-\infty}^{\infty} (\rho \varphi) + div \left(\rho \overline{V} \varphi - \Gamma_{\varphi} \operatorname{grad} \varphi \right) = S_{\varphi}$

Layout Variants

- PCB properties
 - Layers
 - Copper patches
 - Material properties (Stablecor)

- Thermal vias
- PCB layout
- Heat sinks
- Environmental conditions
 - Airflow
 - Air temperature

Back Annotate the Proposed Design

power density 1355 SORCB

FLOMERICS

 $(\rho \varphi) + div (\rho V \varphi - \Gamma_{\sigma} grad \varphi) =$

FLOMERICS $1 - (\rho \varphi) + div (\rho \overline{V} \varphi - \Gamma_{\varphi} grad \varphi) =$

power density 1355LORCB

Fast Response Time

20 minutes for:

- Data transfer
- Thermal model set up
- Solution
- Results processing
- Report generation
- Back annotation
- Four design variants

FLOMERICS $1 - (\rho \varphi) + div (\rho \overline{V} \varphi - \Gamma_{\rho} grad \varphi) = S,$

Summary & Conclusions

Temperature aware design makes SI, thermal and mechanical considerations an integral part of pre-route floor planning

- Enough thermal detail is considered to "close" the floor plan design
- Thermal validation can be performed by EE or ME, depending on response time requirements
 - Thermal closure is typically the responsibility of the thermal engineer

FLOMERICS $1 - (\rho \varphi) + div (\rho \overline{V} \varphi - \Gamma_{\alpha} grad \varphi) = S_{\alpha}$

Summary & Conclusions

Temperature aware design is possible through design tool automation

- Bi-directional compatibility
- All thermal data stored in Allegro database
- Intuitive user interface
- High-degree of modeling and results processing automation
- Temperature aware design is interactive and dynamic as compared to traditional 'over the wall' thermal design
 - Common data transfer mistakes and oversights are eliminated
 - All players are working at the same rate and are synchronized
 - Design space for SI, mechanical and thermal closure is maximized
 - Overall design time and effort is minimized

FLOMERICS $1 - (\rho \varphi) + div (\rho \overline{V} \varphi - \Gamma_{\rho} grad \varphi) = S_{\rho}$

Summary and Conclusions

- Reduce risk of late-cycle redesign by fully considering thermal requirements before routing
- Reduce communication bottlenecks and errors between electrical and mechanical engineers

- Increase data reuse by leveraging the EDA database for thermal design
- Reduce overall design cost and increase quality by opening design space

