

cādence[™]

CMP Model Application in RC and Timing Extraction Flow

Hongmei Liao*, Li Song+, Nickhil Jakadtar+, Taber Smith+

* Qualcomm Inc. San Diego, CA 92121

+ Cadence Design Systems, Inc. San Jose, CA 95134

Outline

- Problems Due to Thickness/Topography Variation
 - Physical: Copper Pooling and Yield Issues
 - Electrical: Timing Failures and Performance Loss Due to Excessive Guardband
- Modeling Technology & Product Overviews
 - Model Calibration and Validations
 - Product (CMP Predictor) & Features
- Problem Mitigation Approaches
 - Integration Flow with RC Extraction Tool
 - RC Extraction and Timing Results

Interconnect Thickness Variation

- Significant Variation
 - Thickness Variation: 10% to 40%
 - Width Variation: 10% to 40%
- Due to Design Layout
 - Varying Feature Density
 - Varying Feature Widths
- Has Impact on Manufacturing
 - Functional Yield Loss
 - Parametric Timing Failures

cādence

© 2007 Cadence Design Systems, Inc. All rights reserved worldwide.

Accounting For Variation in Design Process

4 © 2007 Cadence Design Systems, Inc. All rights reserved worldwide.

Cadence CMP Model Calibration

Calibration Step

Prediction Step

cādence[~]

Supported By Leading Edge Foundries and Many Top Tier IDM's

- Virtual Manufacturing Process Libraries created for each Foundry Process Node (65nm, 45nm, ...)
- VMP's Calibrated by Foundries/IDM's
- VMP's provided by foundries/IDM's to Design Teams
- Half node support

cādence

Cadence CMP Predictor

Features/Applications

- Full chip interconnect and dielectric thickness prediction
 - Multi-level
 - Long-range effects neighboring die and scribe lines
- Robust Viewing and Analysis
 - Command line or point and click UI
 - Surface height, thickness, density,...
 - Topography plot and statistics
- Manufacturing Hotspot Checking
 - Hotspot checking Foundry defined or customer defined
 - EDA methodology for design/dummy fill modifications
- RC Extraction Interfaces
 - EDA tools (RC extraction)
 - Generic thickness export file

Cadence CMP Predictor - Applications

© 2007 Cadence Design Systems, Inc. All rights reserved worldwide.

Variation Impact on RC

- Monte Carlo Simulation

Thickness Impact on Capacitance

The impact of thickness variation (stdev = 5.6%) on C (stdev = 1.9%) is less compared to R (linear). However, variations as large as \pm /- 7% are observed and it may cause extraction errors for critical nets

cādence

Close form calculation. Ref: N.D. Arora, L. Song et al. IEEE Tran. Semiconductor Manufacturing, pp. 262-271, Vol. 18, No.2 May 2005

© 2007 Cadence Design Systems, Inc. All rights reserved worldwide.

Thickness and Width Variation Impact on Timing

180	Τ																
160	-								1								
140	-									F	R	dis	str	ibı	uti	or	١
120	-																
100	-																
80	-																
60	-																
40	-																
20	-																
0	+-	, , ,	ļĻĻĻĻ	ĻIJĮIJĻĿ		ĻЩД,	•,Щ,Щ,Ì	ĻĻĻĻĻ	ĻĻĻĻĻ	ļ I ļI,	ا, ا, ا	ارے ہے۔					
	0.02	0.08	0.14	0.2	0.26	0.32	0.38	.44 0	0.5	0.56	0.62	0.68	0.74	0.8	0.86	0.92	0.98
	0	0	0		0	0	0	0	R	0	0	0	0		0	0	0

	65/90nm	RC delay (ns)	RC Difference (ps)		
	Nominal	2.7546	0		
	W Variation ^a	2.6421	-112.5		
	T Variation ^b	2.8054	50.8		
	T+W Variation	2.6922	-62.4		

a. W = 0.10um, Gaussian, StDev = 10% b. T = 0.25um, Gaussian, StDev = 12%

Both self and coupling capacitance are included in timing calculation

cādence

Close form calculation. Ref: N.D. Arora, L. Song et al. IEEE Tran. Semiconductor Manufacturing, pp. 262-271, Vol. 18, No.2 May 2005

Corner Based Methodology

Worst Case analysis (corner) yields 26% higher worst coupling capacitance estimation

Measurement vs. Analysis

N.D. Arora, L. Song and A. Fujimura US Patent 7089516

CCP And QRC Integration Flow

Model-Based versus Rule-Based Approach: Comparison to Golden Data

RC Extraction Results – CMP Model vs. Rule

Timing Results – CMP Model vs. Rule

		Setup	Hold			
	Rule	Model	Rule	Model		
Path1	ОК	46 ps worse				
Path2	ОК	56 ps worse				
Path3			ок	ок		
Path4			ок	ОК		

Timing slacks are different using model based approach, possible over/under designs

Timing Difference

- The incorporation of CMP model into RC extraction flow of 65nm designs is demonstrated
- Capacitance values extracted using the model based approach is different than those obtained through a rule based approach
- The distribution of timing slacks is also different, in addition, new setup timing violations were observed using the CMP model
- There are potential over or under designs when using rule based approach, model based approach should yield more accurate results

CONNECT: IDEAS

cādence™

CDNLive! 2007 Silicon Valley